Phenomenology at colliders (3)

P. Marage Université Libre de Bruxelles Egyptian School on High Energy Physics BUE – Cairo –May 27 to June 4, 2009

Plan

I. INTRODUCTION AND MOTIVATION

II. STRUCTURE FUNCTIONS AND PARTON DISTRIBUTION FUNCTIONS

- 1. Deep inelastic scattering and structure functions
- 2. Quark parton model
- 3. Scaling violation
- 4. QCD evolution and DGLAP equations

III. FACTORISATION THEOREMS; PDF PARAMETERISATIONS

- 1. Factorisation theorems
- 2. Drell-Yan production with CMS
- 3. Parton distribution function parameterisations
- 4. Parton distribution uncertainties
- 5. Some (of many) uncovered topics

DIS cross section

$$F_{1}(x,Q^{2}) = MW_{1} \qquad F_{2}(x,Q^{2}) = vW_{2}$$

$$\frac{d^{2}\sigma}{dxdy} = \frac{d^{2}\sigma}{dxdQ^{2}}xs = \frac{4\pi\alpha^{2}}{Q^{4}}s\left[(1-y)F_{2}(x,Q^{2}) + \frac{y^{2}}{2}2xF_{1}(x,Q^{2})\right] \qquad \text{em interaction : NC } \gamma \text{ exchange}$$

$$= \dots \left[\dots \pm \frac{G_{F}^{2}}{8\pi^{2}}\frac{Q^{4}}{(1+Q^{2}/M^{2})}y(1-y/2)xF_{3}(x,Q^{2})\right] \qquad \text{weak interaction : CC } W \text{ exchange}$$

F_1 , F_2 , $F_3(x,Q^2)$ = structure functions – physical observables (measured quantities)

Scaling

Incoherent scattering on free partons

$$\rightarrow F_2(x) = \sum_i e_i^2 x f_i(x)$$

$$\rightarrow F_1(x) = \frac{1}{2x} F_2(x)$$

Structure functions depend only on x; cross section given by quark distributions f(x)

$$\frac{d^2\sigma}{dxdy} = \frac{2\pi\alpha^2}{Q^4} s \left[1 + (1-y)^2 \right] \sum_i e_i^2 x f_i(x) \qquad \text{QPM}$$

Scaling violations

Q² evolution of structure functions

photon resolution improves with Q^2 \rightarrow disentangles virtual gluon emission

As Q² increases,

quark content decreases at large x (valence) and increases at low x

also : at low *x*, the gluon content and the sea increase

```
(low x since due to bremsstrahlung \rightarrow soft)
```

parton distribution function evolutions

« structure of the quark »

 $\hat{\sigma}_{\tau}(\mathbf{z}, \mathbf{Q}^2)$ is the photon-quark transverse cross section,

for a (« secondary ») quark of momentum fraction z;

 ξ and z can vary from 0 to 1, but $x = \xi z$ is fixed (hence the δ function)

After integration on *z* :

$$2F_1(x,Q^2) = \sum_i \int_0^1 \frac{d\xi}{\xi} f_i(\xi) \frac{\hat{\sigma}_{\tau}(x \mid \xi, Q^2)}{\hat{\sigma}_0}$$

quark evolution equation

At first order : $\gamma^* q \rightarrow q$ where $z = x / \xi = 1$

At next order, the photon quark cross section contains a $\gamma^* q \rightarrow q g$ contribution

with for
$$\frac{d\hat{\sigma}}{dp_T^2} \simeq e_q^2 \hat{\sigma}_0 \frac{1}{p_T^2} \frac{\alpha_s(Q^2)}{2\pi} P_{qq}(z) \qquad \text{where } P_{qq}(z) = \frac{4}{3} \left(\frac{1+z^2}{1-z}\right)$$

 $P_{qq}(z)$ is the probability of a quark emitting a gluon and reducing the quark momentum by the factor *z* : « <u>splitting function</u> »

$$\hat{\sigma}(\gamma^* q \to qg) = \int_{\mu_F^2}^{s^2/4} dp_T^2 \frac{d\hat{\sigma}}{dp_T^2} \simeq e_q^2 \ \hat{\sigma}_0 \ \frac{\alpha_s(Q^2)}{2\pi} P_{qq}(z) \ \log \frac{Q^2}{\mu_F^2} \qquad \text{log. scaling violation}$$

Keeping the relation between F_2 and quarks

$$\frac{1}{x}F_2(x,Q^2) = \sum_q e_q^2 \left[q(x) + \Delta q(x,Q^2)\right]$$

=> quark density evolution

$$\frac{dq(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int_x^1 \frac{d\xi}{\xi} q(\xi,Q^2) P_{qq}(\frac{x}{\xi})$$

DGLAP equations

Notation $P_{ij} \otimes f_i(x,Q^2) = \int_x^1 \frac{d\xi}{\xi} P_{ij}(\frac{x}{\xi}) f_i(\xi,Q^2)$

$$\frac{dq(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \Big[P_{qq} \otimes q(x,Q^2) + P_{qg} \otimes g(x,Q^2) \Big]$$
$$\frac{dg(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \Big[P_{gq} \otimes q(x,Q^2) + P_{gg} \otimes g(x,Q^2) \Big]$$

Remarks

1. DGLAP equations = Renormalisation group equations (RGE)

$$q(x, Q^2; \mu_F^2) = q(x) + \frac{\alpha_{S}(Q^2)}{2\pi} \log \frac{Q^2}{\mu_F^2} \int_X^1 \frac{d\xi}{\xi} P_{qq}(\frac{x}{\xi}) q(\xi)$$

Choice of factorisation scale μ_F is arbitrary $\rightarrow q(x, Q^2)$ should not depend on μ_F :

$$\frac{dq(x,Q^2;\mu_F^2)}{d\log\mu_F} = 0 \quad \rightarrow \text{ the DGLAP equations}$$

2. Higher orders

NLO and NNLO splitting functions have been calculated. Very complicated !

III. Factorisation theorems; pdf parameterisations

III.1 Factorisation theorems

Infrared singularities

Remember logarithmic singularity for quark structure, due to collinear gluon emission

$$\hat{\sigma}(\gamma^* q \to qg) = e_q^2 \ \hat{\sigma}_0 \ \frac{\alpha_s}{2\pi} P_{qq}(z) \ \log \frac{Q^2}{\mu_F^2} + \int_0^{\mu_F^2} dp_T^2 \ \frac{d\hat{\sigma}}{dp_T^2}$$

For gluon structure, log (Q / m) singularity due to γg fusion diagrams

Generally speaking, *infrared* singularities due to *soft* and *collinear* configurations

(degenerate kinematic situations)

they correspond to on mass shell intermediate parton, with $k^2 = m^2 \approx 0$

They correspond to *long distances*

QCD factorisation theorems

(to be demonstrated : DIS, jet production, Drell-Yan, prompt photon emission, fragmentation in e^+e^-) :

Infrared (long distance) singularities (due to nearly on mass shell partons) can be separated from hard (short distance) partonic process (with large off mass shellness)

i.e. infrared singularities can be « factorised out »

order by order in pQCD (or useless !)

into *universal* parton density functions

- which must be *measured* (cannot be calculated !)
- at some factorisation <u>scale</u> μ_F
- of which the <u>evolution</u> from μ_F can be calculated using the P_{ij} coefficient kernels

(DGLAP equations)

Very much like charge and mass are redefined to dispose of familiar UV singularities due to loop corrections

« renormalisation » is factorisation of UV divergences

« factorisation » is renormalisation of soft / collinear divergences

Master formula

ones often takes $\mu_F = \mu$ - can be Q^2 or E_T (jet) etc.

NB complicated cases where 2 scales (e.g. Q^2 and jet E_T ; also when large log 1/x)

 \blacktriangleright the factorisation scale μ_F can be seen as where hard and soft processes separate,

i.e. maximum off-shelness of partons grouped into pdf $\phi_{i/h}$

> as μ is present in both coeff. fct. and in pdf's,

a « factorisation scheme » (*MS-bar*, *DIS*) must define (for higher orders) the attribution of the short distance finite contributions (i.e. to coeff. fct. or to pdf's) (remember : pdf's are « theoretical » objects)

Parton distribution functions

$$\sigma^{h}(x,Q^{2}) = \sum_{i=q \ \bar{q} \ g} \int_{0}^{1} \frac{d\xi}{\xi} \quad C^{i}(\frac{x}{\xi},\frac{Q^{2}}{\mu^{2}},\frac{\mu_{F}^{2}}{\mu^{2}},\alpha_{S}(\mu^{2})) \quad \phi_{i/h}(\xi,\mu_{F},\mu^{2})$$

 \Box coeff. functions are QCD calculable as power series in α_s ,

infrared safe process dependent (NC DIS, CC DIS, jet, etc.) independent of initial hadron *h*

□ pdf's are specific to *h*

but process independent (including independent of Q^2)

□ pdf evolution kernels (e.g. DGLAP) are

QCD calculable as power series in α_s

infrared safe

- > compute the process (e⁺ e⁻, DIS, …) cross section at parton level, at a given order of perturbation theory
- > compute the « parton structures » $\phi_{i/q} \phi_{i/q}$ at the same order (in a given factorisation scheme)
- \succ thus derive the coefficient functions C^i (at same order, in the same scheme)
- > combine the C^i with the experimental cross section σ^h to derive the non perturbative parton distributions in the hadron $\phi_{i/h}$ (at same order, in the chosen scheme) (i.e. inverse master formula)
- \blacktriangleright use the evolution kernels to extract the pdf's for a given μ factorisation scale value

III.2 Drell-Yan production with CMS

Drell-Yan production

LHC
$$q\bar{q} \rightarrow \gamma / Z \rightarrow e^+ e^-$$

Kinematics

quark with proton energy fraction x_1 antiquark with x_2

Let us compute

 $M = \sqrt{(x_1 x_2)} \sqrt{s} \quad (\sqrt{s} = 2E_b)$

 $x_1 x_2$ not fixed and no reason that $x_1 = x_2$

i.e. two interacting particles (quarks) have different energies $\neq e^+e^-$ M = 100 GeV $\rightarrow \langle x \rangle = ?$

but mass distribution depends on quark distribution in proton - pdf's

NB different acceptance for e+ and e-

Different acceptance for electrons (solid) and positrons (dashed)

In SM, e⁻ is preferentially emitted in direction of quark x(quark) is generally larger than x (antiquark) => e⁻ is statistically more boosted than e⁺

Different acceptance for low (200 GeV - solid) and large mass (2000 GeV - dashed)

2000 GeV => $\sqrt{(x_1x_2)}$ = 0.2 => both quark at relatively large x => Z not much boosted 200 GeV => $\sqrt{(x_1x_2)}$ = 0.02 => x (quark) can be large (0.1), x (antiquark) small 0.004 => very different => Z boosted

(Master thesis V. Dero, ULB)

jet production

Jets LO diagrams

different diagram contributions (gg, gq, qq) depend on pdf's

Tevatron qg dominate

LHC gg dominate

top pair production

underlying event (soft physics)

Electron identification against jet background : isolation criteria

« Hard » $q\bar{q} \rightarrow \gamma / Z \rightarrow e^+ e^-$ interaction

+ proton remnant jets

+« soft » interactions between proton remnants = high density colour fields

-> additional tracks with limited p_{T}

(Master thesis V. Dero, ULB)

Coupures	Nombre moyen de particules	
	A une masse de 200 GeV A une masse de 2000 GeV	
Pas de coupure	359	351
$ \eta < 2.4$	159	162
$p_t > 1 \ GeV$	58	63
$ \eta < 2.4$ et $p_t > 1 \ GeV$	35	40

III.3 Parton distribution parameterisations

Parameterising pdf's

> Choose a starting parameterisation for the various parton species (quarks, antiquarks, gluons)

at a given μ scale (usually $\mu_F = \mu$)

in a given factorisation scheme (usually *MS-bar*)

- with a number of parameters sufficiently *large* to describe the data
- but sufficiently <u>small</u> to be really constraint by physics and not artefacts
- > Decide upon simplification hypotheses to decrease number of degrees of freedom
 - isospin (u(x) in proton = d(x) in neutron; u sea in proton = d sea in neutron, but u sea in proton might be different form u sea in neutron)
 - x-distributions of quark and antiquark seas : have to be the same in total, but what about x dependences ?
 - s(x) sea versus u(x), d(x) seas
- Choose experimental data
 - theoretically relevant (be sure factorisation applies !)
 - theoretically under control e.g.

higher order effects (NLO / LO ; NNLO / NLO)

treatment of nuclear effects (in extracting neutron pdf's from eA and μ A scattering)

experimentally reliable

(for errors - see below !)

(e.g. phase space extrapolations for HERA charmed meson production)

> ... and fit

DIS (H1, ZEUS)

around 20 free parameters (or even more) for some 2000 data points

(A_u and A_d fixed by valence quark counting, A_a fixed by momentum sum rule)

Parameterisations differ in detailed form of parameterisation at starting scale, data sets included, factorisation / renormalisation scale Q_0^2 and scheme, value of $\alpha_s(Q_0^2)$, assumptions on κ , sea asymmetry, possible negative gluon

Data sets

DIS (1) fixed target $\mu p, \mu n$ BCDMS, NMC, SLAC, E665 $x > 10^{-2}$ $e^+ p, e^- p$ (NC and CC) H1, ZEUS $x > 10^{-5}$ quarks, gluons (through evolution) $e^+ p, e^- p$ CC $\rightarrow u / d$ at large x (without nucl. tgt problems) $F_{cc}^2 F_{bb}^2 \rightarrow$ direct access to gluons (photon gluon fusion)

2009 joint analysis by H1 and ZEUS of 1995-2000 data set

110 point-to-point correlated error sources

 χ^2 / dof = 576 / 592

Data sets (2)

DIS (2) $vp vn \overline{v}p \overline{v}n$

CCFR $x > 10^{-2}$: total quarks, valenceNuTeV+ strange sea (dimuon events from CC charm prod.)

Jets

Tevatron collider

Jets in DIS at HERA ZEUS

Sample of LO diagrams:

Data sets (5)

Prompt photon production

Jun lee

Sensitive to primordial k_T of quarks inside nucleon (i.e. higher orders

Results...

$$\frac{dq(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \Big[P_{qq} \otimes q(x,Q^2) + P_{qg} \otimes g(x,Q^2) \Big]$$
$$\frac{dg(x,Q^2)}{d\log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \Big[P_{gq} \otimes q(x,Q^2) + P_{gg} \otimes g(x,Q^2) \Big]$$

III.4 Parton distribution uncertainties

Experimental uncertainties

selection of data

choice of accepted Q^2 , W domain

- effect of experimental errors ?
 correlated / uncorrelated systematics
- □ how to combine « poorely compatible » experiments ?
- Hessian estimate of errors (correlation matrix)

deviation in χ^2 of the global fit from the minimum χ^2 value is assumed to be quadratic in the deviation of the fitted parameters errors from their best value \rightarrow errors obtained from the covariance matrix, with $\Delta \chi^2 = 1$

BUT - hypothesis on the quadratic behaviour of uncertainties : (very) questionable

- (there may exist) strong correlations between parameters (if larger number than necessary)

- inconsistencies between experiments

→ which tolerance to define errors on pdf's ? $\Delta \chi^2$ = 100 (CTEQ), 50 (MRST), 1 (H1 – only DIS) ?

Lagrange multipliers : a series of global fits using Lagrange parameters attached to each given measurement, constraining the measured cross sections by the quoted errors → how does the global description deteriorates as one moves away from the unconstrianed best fit – while spanning a range of Lagrange multipliers

But very heavy procedure

Theoretical uncertainties

- □ higher QCD orders in DIS : NNLO
- \Box log (1/x) and log (1-x) effects
- □ absorptive corrections parton recombinations
- other higher twist contributions
- □ form of the parameterisation at starting scale
- □ number of parameters ?
- □ ... and relevance of the chosen factorisation scheme for the chosen parameterisation form
- □ choice of starting scale of evolution
- \Box choice of α_{s}
- simplification assumptions

isospin violation

 $S \neq \overline{S}$

- treatment of heavy flavours
- nuclear effects
- □ inclusion of e-w corrections (significant at NNLO)
- **D** ...

Remark : pdf's in Monte Carlos

Present Monte Carlos are generally LO + simulation of higher orders through parton shower (JETSET) JETSET follows DGLAP evolution – HERWIG is believed to be closer to BFKL evolution

Higher orders

All order summation is finite (factorisation theorem) but how fast is the convergence ?

trust convergence if corrections decrease when computing next order

sensitivity to scale = indication of size of next order contribution

$$\mu \frac{d}{d\mu} C^{(n)}(x, Q^2, \mu) \sim O(\alpha_s^{n+1})$$

small scale sensitivity at NL for DIS and D-Y large for heavy quarks and prompt photon

Heavy quarks

No HQ in the nucleon at small scale

dynamically generated (photon gluon fusion)

Works at not too large Q² but logarithmic divergence at large Q² $\approx \log \frac{Q}{m_q}$

- \succ at large Q², treated as massless quarks
- \rightarrow Fixed / variable flavour number scheme

Jets

full NNLO calculations not available yet

- \rightarrow estimated through scale dependence :
 - μ often varied from 0.5 E_T to 2 E_T

Resummations

- Fixed order calculations ←→ resummation of all order contributions : *leading logarithms* Necessary when 2 scales, e.g. Q² and jet E_T
 ! double counting !
- DGLAP evolution : hard scale given by Q² resums αⁿ_S logⁿ Q² terms (+ NLO etc.), corresponds to strong ordering in k_T of (virtual) partons
- ► BFKL evolution : in DIS domain (sufficiently large Q^2), very high energy resums $\alpha_s^n \log^n \frac{1}{x}$ terms corresponds to strong parton ordering in *x* (long. momentum) but not necessarily in k_T

Predicts fast increase

CCFM evolution : connexion between DGLAP and BFKL angular ordering : $\theta = \frac{k_T}{xp}$

III.5 (Some of many) uncovered topics

Other parton distributions

\Box unintegrated k_T distributions

relevant at very high energy, and when no strong k_{τ} ordering (BFKL domain) e.g. large k_{τ} jet or particle at large x Q^{2} x $x_{n}, k_{T,n}$ Refere $x_{n-1}, k_{T,n-1}$ Refere $x_{1}, k_{T,1}$ Refere Q^{2} Q^{2

generalised parton distributions

correlations between partons

vector meson and real photon production (DVCS) most relevant for large mass difference between initial and final state

Spin parton distributions

dedicated experiments (HERMES, COMPAS, etc.)

Other hadrons or hadronic objects

photon

 $\gamma \gamma$ scattering at LEP, hard photoproduction at HERA

i.e. measurement of the hadronic structure of the photon

(« resolved » photon $\leftarrow \rightarrow$ « direct » photon = pointlike)

 $\gamma \rightarrow q\bar{q}$ + evolution, including gluon content of the photon

NB in DGLAP evolution, inhomogeneous component (cf. NS SF)

pion

Drell-Yan, leading neutron final states at HERA (interactions on the pion virtual cloud around the proton)

pomeron : hadronic structure of diffractive exchange HERA (total diffractive production, vector mesons, charm, jets, etc. Tevatron (diffractive jet and W production) LHC : diffractive Higgs production

Factorisation theorem proved but strong higher twist contributions

- + effects on evolution equations
- + underlying interaction \rightarrow breaks simple application of of pdf transportation from HERA to Tevatron (« survival probability »)

Some references

- Introduction on DIS, SF, etc.
 F. Halzen, A.D. Martin, *Quarks and Leptons*, Wiley
- Introduction to pdf's and QCD

CTEQ site <u>http://www.phys.psu.edu/~cteq/</u> in particular QCD Handbook <u>http://www.phys.psu.edu/~cteq/#Handbook</u> W.K. Tung, Perturbative QCD and the parton structure of the nucleon see also : J.C. Collins, What exactly is a parton density? arXiv:hep-ph/0304122

- Present status of pdf's draw your favourite pdf's MRST site <u>http://durpdg.dur.ac.uk/hepdata/</u>
- Pdf uncertainties : see e.g. (+ ref. therein)
 A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne Uncertainties of predictions from parton distributions
 I. Experimental errors arXiv:hep-ph/0211080
 II. Theoretical errors arXiv:hep-ph/0308087
- CERN PDFLIB manual <u>http://consult.cern.ch/writeup/pdflib/</u>